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ABSTRACT

GENERALIZED ORDER STATISTICS, BAHADUR REPRESENTATIONS,

CAND SEQUENTIAL NONPARAMETRIC FIXED-WIDTH CONFIDENCE INTERVALS

Let X1 1,... ,X be an i.i.d. sample from df F, let HF be the df of

h(X 1 1 ...,x) based on a given "kernel" h(x.if***"xm), and consider
1 -1

confidence interval estimation of a parameter of the form H (p).F

* ~ This paper introduces confidence intervals formed by a pair of L
* . generalized order statistics, develops Bahadur-type representation

*theory for these order statistics, and constructs corresponding

sequential fixed-width confidence interval procedures. Previous work

*of Bahadur (1966) and Geertsema (1970) is sharpened and extended.
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1. Introduction. In this paper we introduce a notion of generalized

order statistics, develop relevant asymptotic theory, and apply the

results to characterize the convergence properties of a class of

sequential nonparametric fixed-width confidence interval procedures.

Previous work of Bahadur (1966) and Geertsema (1970) is broadly extended,

in close connection with ideas introduced in Serfling (1984). L,-

Let XI , ... Xn be independent random variables having common

distribution function (df) F. (More generally, the Xi's may be random

elements of an arbitrary space.) Let h be a function from IR to IR

and denote by HF the df of h(Xl,...,Xm). Estimation of parameters of

F which are expressible as T(HF), where T(-) is a general form of

L-functional, has been considered by Serfling (1984) and Janssen,

Serfling, and Veraverbeke (1984). Here we confine attention to the

special case of quantile L-functionals and hence to parameters of the

form HF (p),O < p < 1, and we investigate nonparametric confidence

intervals formed by a pair of the "generalized order statistics"-

" <° ... <* (1.1) W~ < "" - nnmi--

the ordered values of h(Xi ,...,Xm ) taken over the n -

n(n-1)...(n-m+l) m-tuples (il...,i m ) of distinct elements from {l,...,n}.

-1
For any such parameter H F (p), the relevant sequential confidence

interval will be given by

AMS 1980 subject classifications: Primary 60F15, Secondary 62L10

*" Key words and phrases: order statistics, Bahadur representation,
sequential, nonparametric, fixed-width confidence intervals
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(1. 2) (
(N, a(N) Nb()

where the "rank functions" a(n) and b(n) are selected so that (1.2)

"* has specified asymptotic coverage probability for N = n (nonrandom) ,

and where N is a random sample size selected for (1.2) to have specified ...

fixed width.

For the case h(x) = x, (1.1) gives the usual order statistics of

the sample and (1.2) represents a sequential version of the classical

method of giving a nonparametric distribution-free confidence interval for

a quantile F (p). For p = , this sequential approach and also the

one based on h(xl,x2 ) = (xI + x2 )/2 were introduced and investigated

by Geertsema (1970) as competing approaches, in the case of symmetric
-1i

df F, for estimation of the location parameter H () = F-( ). In

particular, with N = N(d) designed for (1.2) to have width 2d, and

with a(n),b(n) designed to yield asymptotic coverage probability 1-2a,

Geertsema characterized the convergence rate of N(d) to - and

established the convergence of the coverage probability of (1.2) to

1 -2a, as d 0.

In the present paper we consider the behavior of the sequential

confidence interval (1.2) and the random sample size N(d) for the

general case of an arbitrary "kernel" h(xl,...,xm) . This generality

" entails the complication, fortuitously absent in the two special cases

treated by Geertsema, that the functions a(n),b(n) used in (1.2) may A ,

be random. Consequently, it becomes necessary to extend the repre-

sentation theorem of Bahadur (1966) for central order statistics

- where kn/n - p, 0 < p < 1, not only to the case of our generalized
n

order statistics Wn , where k In(m) p, 0 < p < 1, but also to the

n,kn n (n

-3-
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case that kn is random.

In Section 2 we provide some convergence results on the empirical

df Hn and quantile function H associated with the W k's, and we!,n. n n,k•..' .

use these results to define appropriate rank functions a(n),b(n) for

use in (1.2). This empirical df is defined by

(1.3) H (y) 1 L{h(Xi ,...,X < y), < y <n n(m) y - " yM

where the sum is taken over the n(m) m-tuples (i'.•.,i m ) of distinct •

elements from {l,...,nl. Clearly, Hn(y) is an unbiased estimator of - "

HF(y), and Hn  (p) provides an estimator of H (p) analogous to the

usual sample quantile as estimator of F (p).

Our extended Bahadur representation for W and related results
n~k~

are developed in Section 3. As special cases, we obtain the results
. of Bahadur (1966) for the case h(x) = x and k nonrandom and of

Geertsema (1970) for the case h(xl,x2) = (xI + x2 )/2 and kn nonrandom,

under relaxations of their regularity conditions on F. The results of

Section 3 and in part Section 2 are of general interest, besides their

" applications in this paper.

Section 4 carries out general application to the class of sequential

nonparametric confidence intervals of form (1.2). The two examples

treated by Geertsema (1970) are obtained as special cases, but under

weaker regularity conditions on F.

The random a(n),b(n) used in defining (1.2) are constructed in

* terms of an estimator for a parameter appearing in the asymptotic -
(HF-1

distribution of the random variable Hn (H (p)). It is necessary for

-4-
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our theory in Section 4 that the estimator be strongly consistent. -

Such an estimator is developed in Section 5.

We conclude this introduction with selected examples to which the

methods of Section 4 may be applied.

(i) location estimation: One may view the cases considered by

Geertsema (1970) as two special cases of the class of kernels given

by h(x1 . aIXm)= (x+ +x )/m, for m 1,2,3,.... For symmetric F,
-i -il

the corresponding parameters H F ( ) all reduce to F (), so that the ,

corresponding estimators Tnm given by H ( ) are competitors for the
n. give by,

same goal. A comparative study of these estimators for m = 1,...,5

has been carried out in Choudhury (1984), on the basis of which a.P-

particular choice of m may be selected and the results of Section 4

utilized to provide associated sequential fixed-width confidence

intervals for F-( ).

More generally, let us consider the kernel h(xl,...,x m) = a x--
i=l "

with = 1 (but the a. 's otherwise unrestricted). For symmetric F,

-i -1 ""-
the corresponding parameter HF ( ) reduces in each case to F (M),-1 ' °

but the corresponding estimators H ( ) differ and therefore are
n

competitors. The case m = 2 was introduced by Maritz, Wu and Staudte

(1977) and studied as a special case of the class of M2 -estimators of
-l

Huber (1964), by switching to the closely related estimators HF (M),
n

where Fn is the usual sample df. They established asymptotic normality

and examined asymptotic relative efficiencies, among other aspects.

However, by noting that the statistics H (h) are special cases of
n

the generalized L-statistics of Serfling (1984), we can treat them

-5-
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directly and obtain not only the relevant asymptotic convergence

theory but also (by our Section 4) associated sequential fixed-width

confidence intervals. From the numerical studies of Maritz, Wu and

Staudte (1977) for the case m = 2 and a1 arbitrary, and of Choudhury

(1984) for the case aI = ... = am = 1/m, with r arbitrary, it is

found that the classical median and Hodges-Lehmann estimators can be

successfully competed with in various situations by the estimators

Hn ( ) corresponding to choices of ai even outside the interval
n1

[0,11 and choices of m > 2. It would be of interest to extend these

two previous studies to the case of arbitrary m,a,..., am subject to

i=l

(ii) spread estimation: Included among various measures of

spread discussed by Bickel and Lehmann (1979) is the median of the

distribution of I - X where X are independent r.v.'s having

df F. In our context, this is a "generalized L-functional" parameter

HF ( ), where H is based on the kernel h(X = -2 This-F F and seunta x1 x

can be estimated by the generalized L-statistic H and sequential

fixed-width confidence intervals can be developed by our Section 4

results. (It would be of interest to consider a general class of
-1l

spread measures of this type, defined by HF ( ) with HF based on a

kernel of form

m M
h(Xl,...,x m )  = ixi  , where . . 0.)

(iii) regression slope estimation: Consider the simple linear

regression model Yi a + OXi + Ei' with [c.1 i.i.d. r.v.'s independent

-6-
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of {X.1, and IX. a sequence of random regressors. Let F denote the

common df of the mutually independent pairs (Xi,Yi), 1 < i < n, and

let H F denote the cdf of h((XI,Y I ), (X2 ,Y2 )), where

h((xlY I ),(x 2 ,Y 2 )) = (Y 2 -yl)/(x 2 -Xl). Then clearly a natural

estimator of the parameter a is the median of the ratios

(Yi Y)/(Xi-X.)' i.e., the estimator 1 = Hn(A). This is a version

(for random regressors) of the well-known estimator of Theil (1950).

Using the results of our Section 4, we can provide sequential fixed-

width confidence intervals associated with this estimator.

2. Convergence results for Hn andn and other preliminaries.

We note that, for each fixed y, H (y) is a U-statistic based on the
n

kernel

gy(Xl,..x ) = L{h (x ,...x m )  < y} (xl, .. xm ) E EP ......

Consequently, by standard results on U-statistics (e.g., Serfling

(1980), Chapter 5), we have strong convergence and asymptotic

normality:

a.s.
(2.1) H n (y) H F ( y ) , n -,

and

Sd - -. "2
(2.2) n [Hn(y) -HdF(M)] N( y

2y
where oy a g (X)}, with g (x)=

y Fr {y 1 () gy1(

Var{EfT g (X. ,X. )/m!IXi = x}, where denotes summation over
,-A yi I I Y

all permutations of (l,...,m).

We shall be applying (2.2) with y = HF-(p), in which case a key

-7-
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parameter of concern will be .4. ft.

(2.3)C- ,

Other convenient notation will be p = HF (p) and p = H (p).

By (2.1) and an argument similar to the proof of strong

convergence of the classical sample quantile (e.g., Serfling (1980),

§2.3), we obtain strong convergence of np"

a.s.
(2.4)

pn p

under the condition that p is the unique solution of

HF(y-) < H (y). Also, by Serfling (1984), we have asymptotic

normality of pn'

(2.5) n~ /h(2.5) ( pn- -p-": N(0,m2 %p/hF2 (Ep)),-ii'i

pn p pF p

where it is assumed that H has density hf positive at .

F P,

One could use (2.5) as a basis for construction of confidence

intervals for p, but this would entail estimation of both C and
p p

hF( p). Our approach based on the generalized order statistics (1.1)

eliminates estimation of the latter parameter.

Let us now formulate the rank functions a(n) ,b(n) used in

defining the interval (1.2). First, we note that for integer k we
n

have

P{Wk < = P{Hn( ) > kn/n(m)}

-8-
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k
(2.6) ? fn (H( H > n H M

n Fp n(Mn) F

If k is defined by (with (D denoting the standard normal cdf)

(2.7) n + 'o (n )n-~~

then by (2.2) and (2.6) it follows that

(2.8) f n,kn &P1  a'n c

Moreover, (2.8), remains true if is replaced by a consistent
p

estimator in (2.7). By similar arguments, if ?~is replaced by
pn p

-~or -~in (2.7), then
p pn

(2.9) P{W nk P a~ c, n coL

In

On this basis we define integers a(n), b(n) by

a(n) p1 ~ -
(2.10) jj p- + o (n-n p

andL

b(n) (-cmC

~()n p

and assert that

(2.12) P{(W na ) W n ~) contains P 1 -*- 2cc, n-

-9-



In practice Cp is unknown and must be estimated (consistently) to
p

obtain a(n),b(n) satisfying (2.10), (2.11). Moreover, for the

sequential analogue of (2.12) obtained in Section 4, we shall need *

C to be strongly consistent. A suitable such estimator is developed --
pn

in Section 5.

For certain special cases of kernel h, the "parameter" p does
p

not depend on F. For example, in the case h(x) = x we have

Cp = p(l-p); in the case h(xlX 2 ) = (xI +x 2 )/2 and p = , we have

= 1/12. (Thus Geertsema (1970) did not have to deal with random

versions of the functions a(n),b(n).2 In general, however, depends

upon F. For example, in the case h(xi ,. . . ,Xm) = (Xl+...+ xn)/m, andupon

F(x) = F0(x -E), and m > 2, we have

C =(F) Var {F0  (X)},

( k(F-')-F" 0

where F0  denotes the k-th order convolution of F0 . For m > 3, this ."'-.

parameter may be seen to depend upon F.

3. Generalized order statistics and Bahadur representation theory.-

We consider the order statistics W defined by (1.1). Our first
n,k

result provides an a.s. error bound for W as an estimator of
-1 n

p = HF 1(p), when k /n converges to p at a suitably fast a.s. rate.
- F wh n k Win

(This generalizes and sharpens Lemma 2.5.4C of Serfling (1980), given

for the classical order statistics.)

LEMMA 3.1. Let 0 < p < I. Suppose that H is differentiable atF

p with HFp' ) = hF( p ) > 0. Let {k be a sequence of positive
p Fp F p n

-10-
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*integer-valued r.v.'s (1 < k < n )such that
n- (in)

*(3.1) k /n P p o(En )n - ,a. s.,n (in) n_

*where {r is a sequence of constants tending to 0 with
-~ n

22*(3.2) C n(log n) fp (Um > c 0 > 1,all n sufficiently large.
nf 0

* Then a.s.

(3.3) - I all n sufficiently large.
n,kn -I E

PROOF. We must show that a.s.

(3.4) W nE + E: n all n sufficiently large,

* and

*(3.5) W -~ > C all n sufficiently large.
n~k p n

We shall prove (3.4), the proof of (3.5) being similar. Note that

(3.4) is equivalent to

k
(3.6) H ( +~ ) H( +~ E > ___-H ~+~ E, all large n.n p n F p n-n F p n

(in)

Now, by application of a probability inequality of Hoeffding (1963)

(or see Serfling (1980) , p. 201) , we have

(3.7) P[H n p n n t} < e nrn t, < 0,n > mn.r



=c F0
For t =-2 h (~)c the LHS of (3.7) is seen to be 0(n ),whence

* by the Borel-Cantelli Lemma we have that a.s.

(3.8) Hn p +C - H F p n -2 hF (E')E all large n.

On the other hand, by (3.1) and Young's form of Taylor's Theorem (e.g.,

*see Serfling (1980), p. 45), we have a.s.

*kn
n3.(in) + HF(p H H( +C + o(C

=-h (~)c + o(EF p n n

< -2' h Fn)en all large n.

Thus (3.6) holds a.s.

Next we provide a modulus-of-continuity-type result for the

empirical process Hn * HF() This strengthens an earlier version

* given by Serf ling and Thornton (1981) and also generalizes Lemma 2.5.4E

* of Serfling (1980).

LEMMA 3.2. Let 0 < p < 1 and put EP H (p). suppose thatpF

HW is bounded in a neighborhood of E , with H;(E h (E) > 0.F p F p Fp

*Let {a Ibe a sequence of constants tending to 0 withn

(3.10) an (log n) > A > 0.

Put

(3.11) T =H +u (n(+y) ~HnR [~1H(Rp+ y) HF()

pn IyI. Lnp aFp

-12-
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Then a. s.

(3.12) Tpn O(a n (log n) n n

PROOF. The argument used for Lemma 2.5.4E of Serfling (1980)

carries through, with the use of Theorem 5.6.1A of Serfling (1980) "j

in place of Lemma 2.5.4A of Serfling (1980), and the use of Lemma 3.1

(above) in place of Lemma 2.5.4C of Serfling (1980).

The next result provides a Bahadur-type representation for .'

Wn, kn " .f.. <...,

n

THEOREM 3.1. Let 0 < p < 1 and put Fp H F suppose

that H is twice differentiable at with H' Fh M > 0.F p Fp f p
Let {k n  be a sequence of positive integer-valued r.v.'s (1k < n (m))n- n- (in)";i

satisfying (3.1) and (3.2). Then a.s.

kn/n (m) - Hkn (&p) 2 -

(3.13) W n,k n =Ep + h() + O(max{E nEn n (log n)J}),n

PROOF. Under the assumptions of Theorem 3.1, Lemma 3.1 is

applicable, from which we have a.s. "'

(3.14) ~ Wn~kn -p En n

2Since n > cn for all n sufficiently large, Lemma 3.2 (with en inSince

place of an ) is applicable, whence using (3.14) we haven

(3.15) [Hn(Wn,k -Hn( p) - [HF(Wn,k n F(p O(n n (log n))n
n n

-13-
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-N.-T~~~~~ *7 -- r--.- .

* Now, by Young's form of Taylor's Theorem (Serfling (1980), p. 45)

and (3.14) we write, a.s.,

*(3.16) HF(Wn ) =HIr) + (Wn ~phF(p + (Wn h;E)/1-
F~~~~~~ -,.. F ~ ~

+ 0 E:) n o
n

Since Hn (Wnk k n/n~m a.s., (3.14), (3.15) and (3.16) yield

(3.13). L

This result extends the classical result of Bahadur (1966) (or

* see Serf ling (1980), p. 91) to the case of random kn and generalizes

to the W as well. Also, the regularity condition of Bahadurn,kn

(1966) that F" (in our general context, HF" be bounded in a neighbor-

*hood of EPis slightly relaxed. Indeed, one can further relax this I
regularity condition and obtain the following useful variant of

Theorem 3.1.

LEMMA 3.3. Let 0 < p < 1and put E= H F 1 (C p suppose that1-.

*H' is bounded in a neighborhood of E w ~ith H'( = h ()> 0. Let
Fp F F Fp

{k }be as in Theorem 3.1. Then a.s.* n

k /n -H(E)
*(3.17) W =~ + n (in) n p + O(C In 1 (log n) ), n-n,k hF n

n

where wlies between and W .p n,kP n

(The proof is similar to that of Theorem 3.1.)

-14-



LEMMA 3.3 will be used to advantage in Section 4. One can

obtain a further variant of Theorem 3.1, involving further relaxation

of the regularity condition on HF but yielding a slower rate in

(3.17) and only in probability instead of almost surely. This is

analogous to a variant of Bahadur's result given by Ghosh (1971).

However, for the results of Section 4, the version given by Lemma 3.3

is needed.

4. Sequential nonparametric fixed-width confidence intervals.

Let integers a(n) and b(n) be defined via the formulas of (2.10) and

(2.11) with C replaced by an estimator pn Let N( =N(d)) be the
P pn

smallest integer n > no for which

(4.1) Wn,b(n) -W() < 2d,

for some specified d > 0 and no > 1. We consider the sequential
0-

2d-width confidence interval

(4.2) (WNa(N) WNb(N))

for estimation of p= HF (p). The key properties of this sequential

confidence interval procedure are given by the following result.

THEOREM 4.1. Suppose that H' h F is positive and Lipschitz of

order A at p, for some A > 0. Let be a strongly consistent
p p

.. estimator of p. Then the sequential fixed-width confidence interval

procedure defined by (4.2), and the random sample size N required by

-15-
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this procedure, have the poete

(a) N is well-defined for all d > 0, N( N(d)) is a nondecreasing,

function of d as d decreases to 0, limd~ N(d) = a.s., and
d-.-

* urn E(N) =

2 -1 2 2 2
*(b) lind,0 Nd =[0 (1-ca)] m C /hF) a.s S.

(c) urn P{W <~ W 1 -2a.
d-O N,a(N) -p -N,b(N)

Under the additional assumption

*(4.3) sup n> n E( n) < for some > 1,
pn

we have also 1..
2 -1 2 2 2

(d) lind,0 E(N)d = $ (1 -ca)] in C h and E(N) < -,d > 0.

We first establish three lemmas needed for the proof of this

theorem.

LEMMA 4.1. Let integers a(n),b(n) be defined via the formulas

* of (2.10), (2.11) with ?~replaced by a strongly consistent estimator
p

*Let H satisf th asupin ofTerm41 Tena .

(4.4) n (W b -n Wn n) -2 ( (1-a) mC~ /hFp) n oD

PROOF. By the strong consistency of C it follows that a.s. r
pn

* (4.5) a(n)/n (i) + o(En) n

* and

-16-
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(4.6) b (n) /n (i)=p + o (C n)

where, with c 0 > 1,

*(4.7) =(C 0 log n) mn n /hFUp'

*Hence Lemma 3.3 applies twice, with k given by a(n) and b(n), andn

yields a.s.

*(4.8) n (W -W) n (p-H (t )hh l~* - (n,b(n) n,a(n) n flp F n42) hF (wi

+ 0_1 (-a)m ' (hF(* + h l*)pn F n2 F nl

where w*lies betwen and WiPna(n), and wn between and Wbn)

By Lemma 3.1, and the Lipschitz assumption on hF, we have a.s.

(hF~~ ~ (W2 _w A/2( 0  A/2
-h (* h (W = =: O(n (lgn) )n-

Now, by the law of iterated logarithm for U-statistics (Serf ling (1980)),

n [p -H(%) 0((log log n) )a. s..

a. 5.
*Hence the first term on the right-hand side of (4.8) -~0. The

a. s.
third term clearly *0 also, and the second term -~to the right-

hand side of (4.4).Q

-17-



LEMMA 4.2. For N corresponding to (4.1), with p satisfying
pn

2
(4.3), the r.v.'s {N d>O are uniformly integrable.

PROOF. By the proof of Lemma 3.2 of Bickel and Yahov (1968), it

suffices to prove

Co 2
(4.9) sup P{Nd > r} < co

r=l 0<d<d0

for some do. Let us write

2 2P{Nd > r} < P{N > [r/d 2 ]}

(4.10) < P{W -W > 2d}
[r/d I,b([r/d 1) [r/d ],a([r/d I)

By routine but tedious arguments (see Choudhury (1984), pp. 32-36, for

details), one can bound the right-hand side of (4.10) by a function of

r and d which is finitely summable in r uniformly in d < do, for

sufficiently small d0 . .''

LEMMA 4.3. Let U be the U-statistic based on kernel h(xl,...,xn)

2and a random sample XlI... IXn , n > m. Let Eh < - and > 0,

where

(4.11) i = Var{E{IA h (Xl...,'X i m)/m!l} "-""
1 m P

and YA denotes summation over all permutations of (l,...,m). Let

{NAI be positive integer-valued r.v.'s and {aA) positive constants,

such that

~~~~-18- "'-'''
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(4.12) aA- as A .A 0

and

(4.13) NA/aA- C0 in probability, as A *A 0A A 0 0

with C a finite constant. Then
0

(4.14) NA 2 (UN Eh) dN(0,m 2 n as A ~A 0

PROOF. Put

(4.15) Un =U + R~

where

-~ n
U E{U XI - (n-1)Eh.

Then by Geertsema (2970) (or see Serfling (1980), P. 189), we have

a.s.
(4.16) n R 0~ ,

Let E > 0 be given. Then

P{N6 IRN> }<P sup kOIRj > c) + P{NA < CoaA/21 .

As A *A 0, the first term on the right tends to 0 by virtue of (4.12)

-19-
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and (4.16), and the second term tends to 0 by (4.13). Hence we ".

obtain

pp

(4.17) NA RNA 0P, as A A A0 . *'

Also, by the classical CLT, we have

(4.8)n d 2
(4.18) n (Un Eh) - N(0,m n-

Thus, by the Doeblin-Anscombe CLT for randomly indexed sums (see

Chow and Teicher (1978), p. 317), we have

(4.19) N U -Eh) N(0,m as A A0 .
A - .

Combining (4.17) and (4.19), the desired (4.14) follows. -

PROOF OF THEOREM 4.1. (a) By Lemma 4.1, i.e., by the convergence

(4.4), we can easily deduce that N(d) is finite a.s., that N(d) is

nondecreasing and a.s. as d 0, and finally (by monotone

convergence) that E N(d) as d 4 0.

(b) Noting that

Nb(N) N,a(N) 2d WN-l,b(N-1) - ,a(NI)

we have by the convergence N 4 as d 0 and again the convergence

(4.4) that

2phF 2" 2- 2

(4.20) lind 0 Nd 2 = (1-i()] 2m /h(p) a.s.

-20-



(c) It is readily seen that

.'.....,

lim P{W < <W } lim P{Nk IH()-pI< *-l
d0 ,a(N) - - N,b(N) dN p - (-m.pN

and thus claim (c) follows via Lemma 4.3 applied to the U-statistic

Hn( p ) and Slutsky's Theorem.n p

(d) Since by Lemma 4.2 the r.v.'s {Nd 2 are uniformly integrable, -.d>O

the convergence (4.20) holds also in expectation. Finally,

E(N) < w, d > 0, since the uniform integrability also implies

supdO E{Nd2  <

This completes the proof.

REMARKS. (i) As noted previously, the parameter p is
p

distribution-free only in exceptional cases, so that in typical

applications a strongly consistent estimator is needed. Such an

estimator is provided in Section 5.

(ii) The asymptotic relative efficiency as d + 0 of a sequential

fixed-width confidence interval T relative to another such procedure

S may be taken as

e(T,S) = limd-OE (Ns)/E(NT).

For procedures satisfying Theorem 4.1, we obtain e(T,S) immediately ...

from part (d) of the theorem. In particular, for the generalized

Hodges-Lehmann location estimators HL(m) corresponding to Hn( )
(m) n

for the kernel h(xl,...,xm) (xl+... +x )/m, we have the formula:

-21- "
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(4.21) e(HLX(),X)= f 2 ( )O2 /m2% (F)

m

where f(-) denotes the density function of the r.v. X= (X1 +... +X)/m, .Xm (X......)MA
2denotes the variance of the df F, 0  (W, and-

F(x) = F0(x-) with F0 symmetric about 0. Values of (4.21) for

several choices of F and m = 1,2,... ,5 are as follows.

m.

F 1 2 3 4 5

Normal .637 .955 .981 .989 .993

Uniform .333 1.000 .849 .906 .919

Logistic .822 1.097 1.103 1.083 1.077

Laplace 2.000 1.500 1.321 1.238 1.190

5. Estimation of the nuisance parameter Cp. We note that m2  "

P, p
is the asymptotic variance parameter of the U-statistic based on the

kernel

(5.1) . = {h(Xl,...,Xm) _ HF (p)}.

Sen (1981), §3.7, for example, gives methodology for construction of

strongly consistent estimators for the asymptotic variance parameters

of U-statistics. However, these methods assume that the kernel of

the U-statistic is completely known. In the present case, we have

in (5.1) a kernel involving an unknown parameter p HF (p).
p F

Consequently, we develop an estimator by a different method.

Specifically, we introduce a family of kernels,

-22-
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(5.2) K(x1 1 . Ix2m - ,A), (xir.**'Xmi E I2m-

indexed by A, such that

p 12 m-l p

We denote by U n(A) the U-statistic based on the kernel in (5.2).

Then a natural estimator of C is given by U R~) Since, however,p An p 1-l *

$is unknown, we substitute its estimator =H (p), arriving
p Pn n

at the estimator

~pn n pn

THEOREM 5.1. if H- is continuous at ,then a.s. C n+

F p pn p

PROOF. Define

J(xii--*,XmiY) =(M!)-' JIL{h(x. 1...,x1 ) <Y),
'1 m

where the sum is over permutations (ii*...*im of (1..mand

m-

G(x,y) f ... JJ(x1 1*...Fx mil'x~y) RI dF(x.i).

Then the parameter may be expressed as
p

2 2
(5.4) C= Var (G (X,~ EF{G (X,%) -

-23-
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Defining

2 2
0 (y) = fG (x,y)dF(x) - p

and

K(x , . . . , x 2 m_2 , x , y) = J(xl,...,xm-lIXY)J(Xm , . . . , x 2 m_ 2 , x,y) -P

we have

2m- 1
6(y) f ... fK(xl,....X 2 1ly)n dF(x i)

and

p= 0( p). ""
p p

Noting that K(xl,...,X2mlfy) is monotone in the argument y, and that

this function is continuous at y = p with probability 1 with respect
p

_2m-i1F ) eoti yth oooe-.-.,
to the probability measure Rmi=l dF(x i), we obtain by the monotone

convergence theorem that the function 0(y) is continuous at y i
p

Now let c > 0 be given and choose 5 > 0 such that 10(y) -e( )I <E
p

for y - I < 6. By the monotonicity of the kernel K(Xi,...,X 2 m y)

in the argument y, and by strong convergence of p to p (recall
pn p

(2.4)), we have that a.s.

(5.5) C =  (t) E [U ( P -6) ,U (p+ 6)]~pn ~n pn n p n p

for all n sufficiently large. By the almost sure convergence of

U-statistics, the interval in (5.5) is a.s. contained in the interval

-24-
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*" [e - 6) - , 8( +6) + E] for all n sufficiently large.
0p

But this latter interval is contained in [O(Cp) -2c, ( )+2c],
p p

i.e., in the interval [rp 2E, p +2]. l .
'p p

REMARK. The estimator r given above requires O(n2m-l

*pn

computational steps. In the case that O(n) computational ease is

desired, one can use instead the estimator

C {K(Xl, ... X 2m-l, n + K(X . ' pnn ["4-1]

which is also strongly consistent but less efficient than pn "  Q
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